Sharp maximal function inequalities and boundedness for commutators related to generalized fractional singular integral operators

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Function Inequalities and Boundness for Toeplitz Type Operator Related to General Fractional Singular Integral Operator

We establish some sharp maximal function inequalities for the Toeplitz type operator, which is related to certain fractional singular integral operator with general kernel. These results are helpful to investigate the boundedness of the operator on Lebesgue, Morrey and Triebel–Lizorkin spaces respectively.

متن کامل

A Sharp Maximal Function Estimate for Vector-Valued Multilinear Singular Integral Operator

We establish a sharp maximal function estimate for some vector-valued multilinear singular integral operators. As an application, we obtain the $(L^p, L^q)$-norm inequality for vector-valued multilinear operators.

متن کامل

Some Maximal Operators related to Families of Singular Integral Operators∗

In this paper, we shall study Lp−boundedness of two kinds of maximal operators related to some families of singular integrals. 2000 MSC: Primary 42B20, Secondary 42B25, 42B30

متن کامل

Hardy Spaces, Commutators of Singular Integral Operators Related to Schrödinger Operators and Applications

Let L = −∆+ V be a Schrödinger operator on R, d ≥ 3, where V is a nonnegative function, V 6= 0, and belongs to the reverse Hölder class RHd/2. The purpose of this paper is three-fold. First, we prove a version of the classical theorem of Jones and Journé on weak∗-convergence in H L(R ). Secondly, we give a bilinear decomposition for the product space H L(R )×BMOL(R). Finally, we study the commu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2014

ISSN: 1029-242X

DOI: 10.1186/1029-242x-2014-211